Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genomics ; 116(3): 110854, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701989

RESUMEN

Several studies demonstrated that populations living in the Tibetan plateau are genetically and physiologically adapted to high-altitude conditions, showing genomic signatures ascribable to the action of natural selection. However, so far most of them relied solely on inferences drawn from the analysis of coding variants and point mutations. To fill this gap, we focused on the possible role of polymorphic transposable elements in influencing the adaptation of Tibetan and Sherpa highlanders. To do so, we compared high-altitude and middle/low-lander individuals of East Asian ancestry by performing in silico analyses and differentiation tests on 118 modern and ancient samples. We detected several transposable elements associated with high altitude, which map genes involved in cardiovascular, hematological, chem-dependent and respiratory conditions, suggesting that metabolic and signaling pathways taking part in these functions are disproportionately impacted by the effect of environmental stressors in high-altitude individuals. To our knowledge, our study is the first hinting to a possible role of transposable elements in the adaptation of Tibetan and Sherpa highlanders.

2.
Ageing Res Rev ; 94: 102180, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163518

RESUMEN

A pangenome is composed of all the genetic variability of a group of individuals, and its application to the study of neurodegenerative diseases may provide valuable insights into the underlying aspects of genetic heterogenetiy for these complex ailments, including gene expression, epigenetics, and translation mechanisms. Furthermore, a reference pangenome allows for the identification of previously undetected structural commonalities and differences among individuals, which may help in the diagnosis of a disease, support the prediction of what will happen over time (prognosis) and aid in developing novel treatments in the perspective of personalized medicine. Therefore, in the present review, the application of the pangenome concept to the study of neurodegenerative diseases will be discussed and analyzed for its potential to enable an improvement in diagnosis and prognosis for these illnesses, leading to the development of tailored treatments for individual patients from the knowledge of the genomic composition of a whole population.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Genómica
3.
J Aging Health ; : 8982643231220436, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38069820

RESUMEN

OBJECTIVE: The aim is to explore the role of anthropometric traits and sociodemographic characteristics on human survival. METHODS: Anthropometrics and sociodemographic data of 1944 conscripts born in the first decade of the 20th century in rural municipalities of Calabria (Southern Italy) who underwent medical examinations for military service were collected. Medical examinations were linked to individual survival data. RESULTS: Height and type of occupation influenced life expectancy. For taller men, the risk of mortality increases by about 20% when compared with men with middle height, while farmers exhibited a significant survival advantage compared to those with other working experiences. DISCUSSION: Height and type of occupation were associated with human mortality. These results are likely to be related to the effect of healthy dietary patterns and physical activity on life expectancy. Further studies are needed to understand to what extent these results obtained in a rural context can be generalized to other contexts.

4.
Evol Med Public Health ; 11(1): 397-414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954982

RESUMEN

Background and objectives: Epigenetic estimators based on DNA methylation levels have emerged as promising biomarkers of human aging. These estimators exhibit natural variations across human groups, but data about indigenous populations remain underrepresented in research. This study aims to investigate differences in epigenetic estimators between two distinct human populations, both residing in the Gran Chaco region of Argentina, the Native-American Wichí, and admixed Criollos who are descendants of intermarriages between Native Americans and the first European colonizers, using a population genetic approach. Methodology: We analyzed 24 Wichí (mean age: 39.2 ± 12.9 yo) and 24 Criollos (mean age: 41.1 ± 14.0 yo) for DNA methylation levels using the Infinium MethylationEPIC (Illumina) to calculate 16 epigenetic estimators. Additionally, we examined genome-wide genetic variation using the HumanOmniExpress BeadChip (Illumina) to gain insights into the genetic history of these populations. Results: Our results indicate that Native-American Wichí are epigenetically older compared to Criollos according to five epigenetic estimators. Analyses within the Criollos population reveal that global ancestry does not influence the differences observed, while local (chromosomal) ancestry shows positive associations between specific SNPs located in genomic regions over-represented by Native-American ancestry and measures of epigenetic age acceleration (AgeAccelHannum). Furthermore, we demonstrate that differences in population ecologies also contribute to observed epigenetic differences. Conclusions and implications: Overall, our study suggests that while the genomic history may partially account for the observed epigenetic differences, non-genetic factors, such as lifestyle and ecological factors, play a substantial role in the variability of epigenetic estimators, thereby contributing to variations in human epigenetic aging.

5.
Ageing Res Rev ; 91: 102068, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37704050

RESUMEN

Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aß) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por Virus de Epstein-Barr , Virosis , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , ARN Viral , Herpesvirus Humano 4/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Virosis/complicaciones , Virus Zika/genética , Virus Zika/metabolismo
6.
Sci Rep ; 13(1): 11978, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488251

RESUMEN

The Neolithic burial of Grotta di Pietra Sant'Angelo (CS) represents a unique archaeological finding for the prehistory of Southern Italy. The unusual placement of the inhumation at a rather high altitude and far from inhabited areas, the lack of funerary equipment and the prone deposition of the body find limited similarities in coeval Italian sites. These elements have prompted wider questions on mortuary customs during the prehistory of Southern Italy. This atypical case requires an interdisciplinary approach aimed to build an integrated bioarchaeological profile of the individual. The paleopathological investigation of the skeletal remains revealed the presence of numerous markers that could be associated with craft activities, suggesting possible interpretations of the individual's lifestyle. CT analyses, carried out on the maxillary bones, showed the presence of a peculiar type of dental wear, but also a good density of the bone matrix. Biomolecular and micromorphological analyses of dental calculus highlight the presence of a rich Neolithic-like oral microbiome, the composition of which is consistent with the presence pathologies. Finally, paleogenomic data obtained from the individual were compared with ancient and modern Mediterranean populations, including unpublished high-resolution genome-wide data for 20 modern inhabitants of the nearby village of San Lorenzo Bellizzi, which provided interesting insights into the biodemographic landscape of the Neolithic in Southern Italy.


Asunto(s)
Arqueología , Entierro , Humanos , Restos Mortales , Matriz Ósea , Italia
7.
Genes (Basel) ; 14(6)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37372445

RESUMEN

Sudden cardiac death (SCD) is an unexpected natural death due to cardiac causes, usually happening within one hour of symptom manifestation or in individuals in good health up to 24 h before the event. Genomic screening has been increasingly applied as a useful approach to detecting the genetic variants that potentially contribute to SCD and helping the evaluation of SCD cases in the post-mortem setting. Our aim was to identify the genetic markers associated with SCD, which might enable its target screening and prevention. In this scope, a case-control analysis through the post-mortem genome-wide screening of 30 autopsy cases was performed. We identified a high number of novel genetic variants associated with SCD, of which 25 polymorphisms were consistent with a previous link to cardiovascular diseases. We ascertained that many genes have been already linked to cardiovascular system functioning and diseases and that the metabolisms most implicated in SCD are the lipid, cholesterol, arachidonic acid, and drug metabolisms, suggesting their roles as potential risk factors. Overall, the genetic variants pinpointed herein might be useful markers of SCD, but the novelty of these results requires further investigations.


Asunto(s)
Muerte Súbita Cardíaca , Humanos , Autopsia , Muerte Súbita Cardíaca/etiología
8.
Life (Basel) ; 13(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37374141

RESUMEN

A pangenome is a collection of the common and unique genomes that are present in a given species. It combines the genetic information of all the genomes sampled, resulting in a large and diverse range of genetic material. Pangenomic analysis offers several advantages compared to traditional genomic research. For example, a pangenome is not bound by the physical constraints of a single genome, so it can capture more genetic variability. Thanks to the introduction of the concept of pangenome, it is possible to use exceedingly detailed sequence data to study the evolutionary history of two different species, or how populations within a species differ genetically. In the wake of the Human Pangenome Project, this review aims at discussing the advantages of the pangenome around human genetic variation, which are then framed around how pangenomic data can inform population genetics, phylogenetics, and public health policy by providing insights into the genetic basis of diseases or determining personalized treatments, targeting the specific genetic profile of an individual. Moreover, technical limitations, ethical concerns, and legal considerations are discussed.

9.
Transl Psychiatry ; 13(1): 181, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244930

RESUMEN

Transposable elements (TEs) are mobile genetic elements that constitute half of the human genome. Recent studies suggest that polymorphic non-reference TEs (nrTEs) may contribute to cognitive diseases, such as schizophrenia, through a cis-regulatory effect. The aim of this work is to identify sets of nrTEs putatively linked to an increased risk of developing schizophrenia. To do so, we inspected the nrTE content of genomes from the dorsolateral prefrontal cortex of schizophrenic and control individuals and identified 38 nrTEs that possibly contribute to the emergence of this psychiatric disorder, two of them further confirmed with haplotype-based methods. We then performed in silico functional inferences and found that 9 of the 38 nrTEs act as expression/alternative splicing quantitative trait loci (eQTLs/sQTLs) in the brain, suggesting a possible role in shaping the human cognitive genome structure. To our knowledge, this is the first attempt at identifying polymorphic nrTEs that can contribute to the functionality of the brain. Finally, we suggest that a neurodevelopmental genetic mechanism, which involves evolutionarily young nrTEs, can be key to understanding the ethio-pathogenesis of this complex disorder.


Asunto(s)
Retroelementos , Esquizofrenia , Humanos , Retroelementos/genética , Esquizofrenia/genética , Encéfalo , Sitios de Carácter Cuantitativo , Haplotipos
10.
Curr Issues Mol Biol ; 45(4): 2817-2831, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37185708

RESUMEN

Human APOE is a 299-amino acid long protein expressed and secreted in several tissues and body districts, where it exerts different functions mainly related to lipid metabolism, with specific activities around cholesterol transport and absorption/elimination. It has three main isoforms, determined by the pair of mutations rs7412-C/T and rs429358-C/T, which gives rise to the functionally different APOE variants ε2, ε3, and ε4. These have a distinct impact on lipid metabolism and are differentially implicated in Alzheimer's disease and neurodegeneration, cardiovascular disease, and dyslipidemia. A plethora of other single nucleotide variants along the sequence of the APOE gene have been studied in cohorts of affected individuals, where they also modulate the influence of the three main isoforms to determine the risk of developing the disease. However, no contextual analysis of gene-long haplotypes has been carried out so far, and never extensively in cohorts of healthy individuals from different worldwide populations. Leveraging a rich population genomics dataset, this study elucidates the distribution of APOE variants and haplotypes that are shared across populations and to specific macroareas, revealing a variety of risk-allele associations that distinguish specific ancestral backgrounds and can be leveraged for specific ancestry-informed screenings in medicine and public health.

11.
Res Sq ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747630

RESUMEN

Transposable Elements (TEs) are mobile genetic elements that constitute half of the human genome. Recent studies suggest that polymorphic non-reference TEs (nrTEs) may contribute to cognitive diseases, such as schizophrenia, through a cis-regulatory effect. The aim of this work is to identify sets of nrTEs putatively linked to an increased risk of developing schizophrenia. To do so, we inspected the nrTE content of genomes from the Dorsolateral Prefrontal Cortex of schizophrenic and control individuals, and identified 38 nrTEs which possibly contribute to the emergence of this psychiatric disorder. Furthermore, we performed in silico functional inferences and found, for instance, that 9 of the 38 nrTEs act as expression/alternative splicing quantitative trait loci (eQTLs/sQTLs) in the brain, suggesting a possible role in shaping the human cognitive genome structure. Therefore, to our knowledge, this is the first attempt at identifying polymorphic nrTEs that can contribute to the functionality of the brain. Finally, we suggest that a neurodevelopmental genetic mechanism, which involves evolutionarily young nrTEs, can be the key to understanding the ethiopathogenesis of this complex disorder.

12.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835616

RESUMEN

Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Trombosis , Humanos , Prostaglandinas , Factores de Riesgo
13.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834612

RESUMEN

Alzheimer's disease (AD) represents the most prevalent type of dementia in elderly people, primarily characterized by brain accumulation of beta-amyloid (Aß) peptides, derived from Amyloid Precursor Protein (APP), in the extracellular space (amyloid plaques) and intracellular deposits of the hyperphosphorylated form of the protein tau (p-tau; tangles or neurofibrillary aggregates). The Nerve growth factor receptor (NGFR/p75NTR) represents a low-affinity receptor for all known mammalians neurotrophins (i.e., proNGF, NGF, BDNF, NT-3 e NT-4/5) and it is involved in pathways that determine both survival and death of neurons. Interestingly, also Aß peptides can blind to NGFR/p75NTR making it the "ideal" candidate in mediating Aß-induced neuropathology. In addition to pathogenesis and neuropathology, several data indicated that NGFR/p75NTR could play a key role in AD also from a genetic perspective. Other studies suggested that NGFR/p75NTR could represent a good diagnostic tool, as well as a promising therapeutic target for AD. Here, we comprehensively summarize and review the current experimental evidence on this topic.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Mamíferos/metabolismo , Factor de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Proteínas tau/metabolismo
14.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555510

RESUMEN

Genetic discoveries related to Alzheimer's disease and other dementias have been performed using either large cohorts of affected subjects or multiple individuals from the same pedigree, therefore disregarding mutations in the context of healthy groups. Moreover, a large portion of studies so far have been performed on individuals of European ancestry, with a remarkable lack of epidemiological and genomic data from underrepresented populations. In the present study, 70 single-point mutations on the APP gene in a publicly available genetic dataset that included 2504 healthy individuals from 26 populations were scanned, and their distribution was analyzed. Furthermore, after gametic phase reconstruction, a pairwise comparison of the segments surrounding the mutations was performed to reveal patterns of haplotype sharing that could point to specific cross-population and cross-ancestry admixture events. Eight mutations were detected in the worldwide dataset, with several of them being specific for a single individual, population, or macroarea. Patterns of segment sharing reflected recent historical events of migration and admixture possibly linked to colonization campaigns. These observations reveal the population dynamics of the considered APP mutations in worldwide human groups and support the development of ancestry-informed screening practices for the improvement of precision and personalized approaches to neurodegeneration and dementia.


Asunto(s)
Precursor de Proteína beta-Amiloide , Genética de Población , Migración Humana , Humanos , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Mutación , Mutación Puntual , Dinámica Poblacional
15.
Mob DNA ; 13(1): 27, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36443831

RESUMEN

Retrotransposons are genetic elements with the ability to replicate in the genome using reverse transcriptase: they have been associated with the development of different biological structures, such as the Central Nervous System (CNS), and their high mutagenic potential has been linked to various diseases, including cancer and neurological disorders. Throughout evolution and over time, Primates and Homo had to cope with infections from viruses and bacteria, and also with endogenous retroelements. Therefore, host genomes have evolved numerous methods to counteract the activity of endogenous and exogenous pathogens, and the APOBEC3 family of mutators is a prime example of a defensive mechanism in this context.In most Primates, there are seven members of the APOBEC3 family of deaminase proteins: among their functions, there is the ability to inhibit the mobilization of retrotransposons and the functionality of viruses. The evolution of the APOBEC3 proteins found in Primates is correlated with the expansion of two major families of retrotransposons, i.e. ERV and LINE-1.In this review, we will discuss how the rapid expansion of the APOBEC3 family is linked to the evolution of retrotransposons, highlighting the strong evolutionary arms race that characterized the history of APOBEC3s and endogenous retroelements in Primates. Moreover, the possible role of this relationship will be assessed in the context of embryonic development and brain-associated diseases.

16.
Genes (Basel) ; 13(5)2022 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-35627311

RESUMEN

Signatures of positive selection in the genome are a characteristic mark of adaptation that can reveal an ongoing, recent, or ancient response to environmental change throughout the evolution of a population. New sources of food, climate conditions, and exposure to pathogens are only some of the possible sources of selective pressure, and the rise of advantageous genetic variants is a crucial determinant of survival and reproduction. In this context, the ability to detect these signatures of selection may pinpoint genetic variants that are responsible for a significant change in gene regulation, gene expression, or protein synthesis, structure, and function. This review focuses on statistical methods that take advantage of linkage disequilibrium and haplotype determination to reveal signatures of positive selection in whole-genome sequencing data, showing that they emerge from different descriptions of the same underlying event. Moreover, considerations are provided around the application of these statistics to different species, their suitability for ancient DNA, and the usefulness of discovering variants under selection for biomedicine and public health in an evolutionary medicine framework.


Asunto(s)
Genoma , Selección Genética , Haplotipos/genética , Desequilibrio de Ligamiento , Secuenciación Completa del Genoma
17.
Immunol Lett ; 246: 37-51, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35577000

RESUMEN

Single-cell multi-omics is a rapidly evolving field, thanks to a fast technological improvement and the growing accuracy of dedicated computational tools for data analysis. Its importance is highlighted by the possibility to distinguish apparently identical cells based on their pattern of gene expression. In this review, the mostly used methodological pipelines for single-cell analysis, as well as the advantages and potential limitations of several analytical steps, are presented and discussed, with specific sections focusing on crucial parts of this procedure, their bioinformatic tools, as well as their advantages and potential drawbacks. The current bioinformatic approaches for T-cell receptor (TCR) reconstruction are also introduced, as well as a comparison of single-cell sequencing technologies. Critical points that may introduce analytical biases and potential inaccuracies in data interpretation are also highlighted.


Asunto(s)
Biología Computacional , Análisis de la Célula Individual , Biología Computacional/métodos , Receptores de Antígenos de Linfocitos T/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Linfocitos T
18.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34597392

RESUMEN

Native American genetic ancestry has been remarkably implicated with increased risk of diverse health issues in several Mexican populations, especially in relation to the dramatic changes in environmental, dietary, and cultural settings they have recently undergone. In particular, the effects of these ecological transitions and Westernization of lifestyles have been investigated so far predominantly on Mestizo individuals. Nevertheless, indigenous groups, rather than admixed Mexicans, have plausibly retained the highest proportions of genetic components shaped by natural selection in response to the ancient milieu experienced by Mexican ancestors during their pre-Columbian evolutionary history. These formerly adaptive variants have the potential to represent the genetic determinants of some biological traits that are peculiar to Mexican people, as well as a reservoir of loci with possible biomedical relevance. To test such a hypothesis, we used genome-wide genotype data to infer the unique adaptive evolution of Native Mexican groups selected as reasonable descendants of the main pre-Columbian Mexican civilizations. A combination of haplotype-based and gene-network analyses enabled us to detect genomic signatures ascribable to polygenic adaptive traits plausibly evolved by the main genetic clusters of Mexican indigenous populations to cope with local environmental and/or cultural conditions. Some of these adaptations were found to play a role in modulating the susceptibility/resistance of these groups to certain pathological conditions, thus providing new evidence that diverse selective pressures have contributed to shape the current biological and disease-risk patterns of present-day Native and Mestizo Mexican populations.


Asunto(s)
Adaptación Fisiológica , Selección Genética , Genotipo , Haplotipos , Humanos , Herencia Multifactorial
19.
Int J Mol Sci ; 22(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065521

RESUMEN

Music is an exclusive feature of humankind. It can be considered as a form of universal communication, only partly comparable to the vocalizations of songbirds. Many trends of research in this field try to address music origins, as well as the genetic bases of musicality. On one hand, several hypotheses have been made on the evolution of music and its role, but there is still debate, and comparative studies suggest a gradual evolution of some abilities underlying musicality in primates. On the other hand, genome-wide studies highlight several genes associated with musical aptitude, confirming a genetic basis for different musical skills which humans show. Moreover, some genes associated with musicality are involved also in singing and song learning in songbirds, suggesting a likely evolutionary convergence between humans and songbirds. This comprehensive review aims at presenting the concept of music as a sociocultural manifestation within the current debate about its biocultural origin and evolutionary function, in the context of the most recent discoveries related to the cross-species genetics of musical production and perception.


Asunto(s)
Genoma Humano/genética , Animales , Evolución Biológica , Genómica/métodos , Humanos , Música
20.
Genes (Basel) ; 12(5)2021 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-33922908

RESUMEN

The Italian peninsula was host to a strong history of migration processes that shaped its genomic variability since prehistoric times. During the Metal Age, Sicily and Southern Italy were the protagonists of intense trade networks and settlements along the Mediterranean. Nonetheless, ancient DNA studies in Southern Italy are, at present, still limited to prehistoric and Roman Apulia. Here, we present the first mitogenomes from a Middle Bronze Age cave burial in Calabria to address this knowledge gap. We adopted a hybridization capture approach, which enabled the recovery of one complete and one partial mitochondrial genome. Phylogenetic analysis assigned these two individuals to the H1e and H5 subhaplogroups, respectively. This preliminary phylogenetic analysis supports affinities with coeval Sicilian populations, along with Linearbandkeramik and Bell Beaker cultures maternal lineages from Central Europe and Iberia. Our work represents a starting point which contributes to the comprehension of migrations and population dynamics in Southern Italy, and highlights this knowledge gap yet to be filled by genomic studies.


Asunto(s)
ADN Antiguo , Genoma Humano , Genoma Mitocondrial , Evolución Molecular , Humanos , Italia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...